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EFFICIENT LOW-SPEEDFLIGHT IN A WIND FIELD

MichaelA. Feldman

(ABSTRACT)

A new softwaretool wasneeded%r flight planning of a high altitude, low speed un-

manned aerial vehicle which would be flying in winds close to the actual airspeed of the

vehicle. An energy modeled NLP formulation was used to obtain results for a variety of

missions and wind profiles. The energy constraint derived included terms due to the wind

field and the performance index was a weighted combination of the amount of fuel used

and the final time. With no emphasis on time and with no winds the vehicle was found

to fly at maximum lift to drag velocity, G,_d. When flying in tail winds the velocity was

less than V_,,d, while flying in head winds the velocity was higher than V_,,d. A family of

solutions was found with varying times of flight and varying fuel amounts consumed which

will aid the operator in choosing a flight plan depending on a desired landing time. At

certain parts of the flight, the turning terms in the energy constraint equation were found

to be significant. An analysis of a simpler vertical plane cruise optimal control problem

was used to explain some of the characteristics of the vertical plane NLP results.
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Chapter 1

Introduction

Problems associated with finding the 'best' path for an object have long been of interest to

both mathematicians and practitioners. The classical brachistochrone problem, proposed

by John Bernoulli in 1696 [1] is an example of an early problem that led to the development

of the Calculus of Variations. In more recent times, the problem of optimal ascent of

a rocket-powered vehicle proposed by Robert Goddard (see [2] for example), provided

motivation for modern development in trajectory optimization.

As noted optimal shaping of aerospace trajectories has provided the motivation for much

recent study of modern optimization theory and algorithms. Current industrial practice

favors approaches where the continuous-time optimal control problem is transcribed to a

finite-dimensional Non-Linear Programming problem (NLP) by a discretization process.

Two such general formulations are implemented in the POST [3] and the OTIS [4] codes.

There are several existing codes for various flight planning applications. The OPTIM

[5] code, developed by Analytical Mechanics Associates, Inc., and the MITRE [6] code were

written to be used for flight planning purposes or as part of an on-board flight manage-

ment system for general aviation or turbojet transport aircraft. Both codes minimize fuel

consumption or direct operating costs. Only the vertical plane aspects of the flight are

optimized in these codes. The horizontal position coordinates that the vehicle follows are

predetermined depending on the locations of navigational aids and airports.

1.1 Flight Problem

The motivation for this work is flight-planning for the Theseus vehicle, built by Aurora

Flight Sciences. The aircraft is to be used to sample the atmosphere over the South Pole

and is to operate for the most part in an autonomous fashion. The aircraft data specific

to Theseus are included in Appendix C. While the numerical results are specific to the

Theseus airplane, the approach is rather general and applies to similar vehicles which fly

at low speeds in wind fields. The nominal mission includes take-off, long-range flight to



a remotesite of interest near the SouthPolG a scientificdata-collectionleg and return
to base. A ground-basedhumanpilot will perform take off and landing but the aircraft
acts like a robot during the remainderof its flight. It is controlledby providing specific
coordinatesor waypointsto fly through and by providing speedand altitude commands.
This waypoint ideawill bediscussedfurther in Chapter3.

The science mission requires flight over a prescribed path at a prescribed altitude. We

are not focusing on trajectory shaping for this part of the flight since it is mostly defined by

the scientific data requirements. The vehicle is to operate at high altitudes (60_000 - 80_000

feet) during this science leg of the mission. The vehicle will fly from Christchurch_ New

Zealand to the vicinity of the South Pole_ take data_ and fly back. It is about 2800 nautical

miles from the base to the Pole. The wind-field is presumed known (and persistent); its

magnitude is expected to be a significant fraction of the vehicle's true airspeed. Average

winds at these altitudes are substantial as will be seen by a figure in Chapter 5. A wind

model obtained from NASA Goddard Space Flight Center describes horizontal winds which

are in a clockwise direction around the Pole. The wind speed depends on the distance from

the pole and on the altitude.

The specific problem for flight planning is getting back to the base. Given the winds

and the current _state _ of the vehicle can it return safely? Since the vehicle is landed by a

human operator it is preferable to land during daylight hours. In addition_ since the vehicle

is flimsy due to its low wing loading_ we do not want to land in bad weather. Thus_ we

are interested in the range of possible times when we can get back. Will there be sufficient

light? Will the local weather be okay? To answer these questions we pose a family of flight

optimization problems where the performance index is a weighted combination of fuel and

time (i.e. Y = l/Vy + # fy_# > 0). The weighting parameter # defines a one-parameter

family of flight optimization problems. There should be a family of solutions of varying

times to return home and fuel consumed. The limits will correspond to the longest time to

return home which will also be the most fuel efficient path and the shortest time to return
home.

In the present paper a discretization is used that is specially adapted to the flight

problem of interest. Among the unique aspects of the present discretization are: a least-

squares formulation for certain kinematic constraints_ the use of energy ideas to enforce

Newton's Laws_ and_ the inclusion of large magnitude horizontal winds. In order to offer

more flexibility in the presence of the strong horizontal winds_ the horizontal path is not

fixed as it was in the OPTIM and MITRE codes. Energy exchange due to turning will also
be included.
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1.2 Overview

In order to solve the flight planning problem a mathematical model is necessary. Various

levels of fidelity are available such as point-mass, energy, and cruise modeling. In the

next chapter a description of the various models available and reasons to use each one are

provided. Following this is the development of the finite dimensional energy model. This

development includes the derivations of the constraint equations to use in the computer

code to solve the problem. Chapters 4 and 5 discuss some results from running vertical

plane and full three dimensional versions of the energy model code. Chapter 6 explains

some of the results using a simple, vertical-plane, continuous optimal control problem.
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Chapter 2

Modeling

An appropriate mathematical model is needed in solving the current flight planning prob-

lem. In stability and control a highly detailed mathematical model including rigid body

mechanics is usually used. However, this is a flight performance problem so only motion of
the vehicle as a whole is of interest. Positions and motions of the control surfaces on the

vehicle, for example, are not important in this type of problem so the most detailed model

needed in flight performance is a point mass model. Simplified, reduced order versions of

the point mass model are also available and these include the energy model and the cruise
model.

2.1 Point Mass Model

The derivation of the point mass model for symmetric flight over a flat, non-rotating Earth

with horizontal winds is in Appendix A. While the point-mass model is high fidelity, it

is not best for our purposes. The reason is that in the point-mass model the controls

are directly related to forces - small disturbance motions include the phugoid mode and

four zero eigenvalues (3 corresponding to position and one to heading). Thus the system

has 4 poles at the origin and is very difficult to control. Many waypoints close together

would be needed to capture the dynamics of the phugoid oscillations for example. A more

approximate model with less dynamics is necessary in this case. Here we focus on the

energy model first developed by Kaiser [7].

2.2 Energy Model

In this model velocity and altitude are combined into a single variable energy. The absolute

energy is defined to be the sum of the potential and kinetic energy per unit weight. The term

absolute is to remind us that the kinetic energy is computed from the inertial velocity, _,

4



asdefinedin AppendixA. The differentialequationsfor altitude andpath angleevolution

are equilibrated, reducing the dynamic order of the model. In the vertical plane case five

state variables (two position, two velocity and weight) are reduced to three state variables

(range, energy and weight). An energy constraint equation ensures that the change in total

energy from one point to another is equal to the work done by the net external force acting

on the vehicle. This model is simpler than the point-mass model and is the one which will

be used to develop the computer code.

2.3 Cruise Model

To get a cruise model the energy model is simplified even more by equilibrating the energy

state. This leaves only two state variables (range and fuel weight consumed). This model

will be used for an analysis of the continuous optimal control problem to characterize the

nature of optimal paths in Chapter 6.



Chapter 3

Finite Dimensional Energy Model

In keeping with modern practice [3_ 4] we shall approximate the flight problem by a finite-

dimensional transcription. Rather than considering the state/control variables as 'arbi-

trary _ functions of time_ we shall prescribe their values at certain points_ along with ap-

propriate rules for interpolating between these points (in our case a mixture of piecewise

linear and piecewise constant approximation). This approach has the effect of replacing

the infinite-dimensional problem (find the state/control functions) with a finite-dimensional

problem (find certain state/control values). Since the models are generally nonlinear we

have a Non-Linear Programming problem (NLP).

Our goal is to develop an efficient NLP formulation for the flight planning problem_

including the important effects of winds. The NLP framework requires that we identify

a parameterization of the flight path_ a scalar-valued cost functional and vector-valued

constraints. The constraint functions must enforce the important physics of the flight

problem to a reasonable level of approximation.

It is convenient to parameterize the set of possible flight paths in terms of quantities

that are useful in the flight guidance problem. As noted previously_ the guidance of the

vehicle is naturally implemented in terms of waypoints. Certain waypoints through which

the airplane will fly are specified. Figure 3.1 illustrates a horizontal projection of four such

waypoints. At each waypoint we consider the following variables:

• z, y, h horizontal position coordinates and altitude

• V_ X speed and heading_ relative to the air mass

• E total mechanical energy per unit weight

• <n remaining mass

• ( throttle setting

6
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For conceptua] purposes we consider a point-mass mode] wherein the dynamics are

described by Newton's Laws. The 'states' and 'controls' will be recorded at each waypoint.

The variables include position coordinates, velocity with respect to the surrounding air

mass, heading angle and vehicle mass. All of these variables, except heading angle, are

imagined to change smoothly between waypoints. The heading angle will be assumed to be

nearly constant between waypoints; any change will occur in a short period of time in the

vicinity of each waypoint. For concreteness it is imagined that this heading change occurs

as we approach a waypoint. For the bulk of the flight from waypoint i to point i + 1 the

relative velocity heading angle is constant at the value Xi. Controls include the throttle

setting, _, and are taken to be piecewise constant from a 'departing' waypoint to the next

('arriving') waypoint and then to change instantly at the %rriving' waypoint. The wind

velocity is a smooth function of position•

We envision that the waypoints are well separated so that the flight path inclination

(-_) is small. Vertical equilibrium of the aircraft will require equality of lift and weight•

Additionally, along this path the net work done on the vehicle must equal the change in

kinetic energy• Finally, the weight change must balance the integral of the fuel rate. A

detailed description of the various constraints is now presented•

3.1 Horizontal Path Constraint

Here the requirement that the integrated path segment must connect adjacent waypoints is

enforced. For notational convenience, let f_ represent the horizontal position components;

and, let _7represent the horizontal plane projection of the vehicle's velocity (relative to the

air mass). Vw is the wind-field which has been assumed horizontal.

We have

• fti+l , ----or 0 (3.1)
Jti

The integral in (3.1) is approximated by averaging the integrand over the flight segment.

For the moment we defer a detailed description of this averaging and simply introduce the

symbol @ for its value•

The constraint (3.1) is written as:

4 = - - v¢(ti÷ - = 0

The vector quantities may be computed from the data at the waypoints. Note, however,

that we have elected not to include time in our parameter list. Instead, we solve for

Ati - (ti+l - ti) from the least-squares problem

8



This leadsto the requirement

, - i1_112

With this Ati in hand, one can compute the norm of the residual error from

where A5 = 5+1 - 5. It is tempting to impose the constraint ll_ll 2 = 0. Unfortunately,

since this constraint is quadratic, we find that when the constraint vanishes, so does its

gradient. This will introduce a loss-of-rank feature in the Kuhn-Tucker optimality system

at the solution point and cause considerable trouble in the NLP problem (see [8], p 78

if). Instead we opt for a different pathology and impose the scalar constraint that the y

component of the residual _ vanish. This leads to

The choice of y component over x component is arbitrary. Note that for some geometries

the constraint (3.3) may be satisfied while the path is not kinematically feasible. We must

test any numerical 'solution' of our problem to ensure this situation does not occur. We

will also include an inequality constraint

z_ti -- Z_tmin _ 0 (3.4)

where Attain is sortie prescribed minimum allowable time. The constraint (3.4) ensures that

time goes forward and, loosely, that the waypoints are not 'too close'.

._.A
3.1.1 Calculation of v i

We use an implicit Euler rule and calculate the integrand as the simple average of 'left'

and 'right' values. That is, we have

with

_ - _(_) + v_(eosx, _x + sinX,_)
_ -- _(_._)+V_._(eosX,_x + sinx, a_)

Note that we have used the heading Xi in both the gL and the g_ expressions, whereas

the remaining data are local to the waypoint. Our model supposes that the changes in

local airspeed and wind-field are smooth, whereas the heading change is concentrated as

we 'arrive' at the waypoint. For all but the last few seconds of this flight segment we have

_(t) = _

9



3.2 Energy Change Constraint

We start with Newton's Second Law.

where _ is the inertial velocity:

2_

_v_ = _ (3.5)

= ? + Cw (3.6)
TheDistance traveled is expressed by equation (3.6) multiplied by the change in time.

force in equation (3.5) is dotted with this distance to get an expression for energy.

ml/i . _ dt = !_. (? + Vw) dt (3.7)

To continue with the derivation of the energy constraint equation two special cases will be

considered separately: wings level flight and turning flight. Each of these conditions will

affect the force in equation (3.7) differently.

3.2.1 Wings-Level Flight

We now analyze the wings-level flight segment between adjacent waypoints. Note this is

the bulk of the flight since the turning is supposed to happen in the brief time preceding

arrival at the new waypoint. Expanding the force in equation (3.5) yields the following

equation.

F = (T- D) _ + L E_+ _.g E_ (3.s)
where

Et is a unit vector tangential to V,

E_ is a unit vector normal to V in the vertical plane,

Ez is a unit vector in the direction of gravity.

These unit vectors are illustrated in Figure 3.2. The drag, D, in equation (3.8) is the level

flight drag with a load factor of n = 1. Substituting equation (3.8) into equation (3.7)"

_v_. v_ dt = [(T- Z))Et+ CE_]•?dr + [(T- Z))Et+ CE_]•_dt + _gEz. (? + _) dt (3.9)

Since V = Vet, equation (3.9) is simplified slightly.

_v_. v_ dt = (T - D) V dt + [(T- Z))Et+ LE_]•f_dt + _gE_. (? + _) dt (3.10)

The absolute specific energy is defined to be the sum of the potential and kinetic energy

per unit weight.

z-_(_.

10
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Taking the derivative with respect to time, the following is obtained:

dZ_ 1(_. G)+i_
dt g

After substituting ]z = _(T_ + Vw) • ez and multiplying both sides by the differential dt we

get

dZ= !(_. _) dr-(6 + _)._z dt (3.12)
9

Combining equations (3.10) and (3.12) with simple manipulations ]eads to:

(T-D) [FT-D_gdE = . _g V dt +

This form is integrated to yield

?Tt.g L m.q
L G,I" V,_ dt (3.13)

+m--9 ]

The integrand of the first term on the right side of equation (3.13) is the specific excess

power, P_ -- (T - D)V/m9. The product T V is the power available, Pa, while the product

D V is the power required, P,,. The other two terms in equation (3.13) are given temporary

names so they can be evaluated separately.

Equation (3.13) becomes

L
T2 = (_-_g)e_. V,_, (3.14)

f f f
dt

From Figure 3.2 we see that the tangent vector can be represented as

_t = cos 7 _h -- sin 7 _

where 4t_ is a unit vector in the direction of the horizontal projection of the aircraft velocity.

T1 now becomes

T,= _-_ _ • - •
However, in our model the winds are in the horizontal direction only, so when the wind

vector is dotted with _, a vertical unit vector, the second term in the brackets disappears.

12



The horizontalunit vector,eta,canbewritten asEt_= cosX ex + sin}{ _y and substituted

into equation (3.15).

T1 (T-D) COS(_w X) G
= \ -Ed cos

I

whereX_is tile headingangleof tile wind velocityandVw= IlVwII. _1 ismultipliedand
divided by tile aircraft velocity, V, to get an expression in terms of specific excess power
which can be calculated.

Now the T,2 term will be evaluated. Since the vehicle is assumed to be in symmetric flight,
lift can be written as

L = rr_9 cos -_ (3.16)

The normal unit vector, _,, can be written as

_, = - sin -_ et_ - cos -_ ez (3.17)

Equations (3.16) and (3.17) are substituted into expression (3.14) to yield:

T2= -eos_[sin_(_i_.¢,_)+eos_(_z._)]. (3.1S)

Again, because tile winds are horizontal, equation (3.18) simplifies to

T2 = - cos -_ sin -_cos(x_ - x)V_.

This equation is multiplied and divided by the aircraft velocity, V, so that V sin-_ can be

written as the vertical velocity, }z, and T2 becomes

T2- v_ cos _eos(x_ - x)/_
V

Using tile assumption that tile path angle (-7) is small and cosy _ 1, T1 and T2 can be
written as

vweos(x_- X) (3.19)'rl= P_-G

_2 - v_ eos(x_ - x)/_ (3.20)
V

We define a new variable, 5c = --_ eos(x_ - X). After substituting 5c into equations (3.19)

and (3.20), T1 and T2 finally become

13



The absoluteenergyintegral cannowbewritten as

Rearrangingterms,the energybalanceequationis

Notethat for the casewith nowinds_-= 0 andequation(3.22)reducesto the usualenergy
integral result.

3.2.2 Turning Segment

There is also energy exchange in the turn in the vicinity of each waypoint. During the turn

there will be a horizontal component of the lift vector denoted by Ili, ll-- L sin#, where

# is the vehicle bank angle. This force is dotted with the inertial velocity and integrated

over time to get the work done in the turn.

Work due to banked turn = f Lt_" (V + Vw)dt

The force is perpendicular to the vehicle velocity,/7,t_ • 19 = 0, while the contribution from

the wind velocity leads to

Work due to banked turn = L sin # Vw cos(x + _- X,_)dr. (3.23)

Instead of integrating over time it is more convenient to integrate over the change in heading

angle. To produce this change of independent variable the third equation in (A.23) used.

Assuming that the winds are constant near the waypoint and that the flight path angle, 7,

is zero, we observe the familiar result:

mV;_ = L sin #

or in differential form:

L sin # dt = mVdx (3.24)

Equation (3.24) is now substituted into equation (3.23) to get an equation which can be

integrated over the heading angle.

Work due to banked turn = frnVV_[- sin(x - X,_)] dx
=   vV [eos(x - x)]lb (3.25)

One special case of this work in a banked turn would be similar to a problem presented

in Halfman [9]. Suppose the airplane starts out flying directly against the wind at the

14
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samevelocity magnitudeasthe wind. After a 180° turn the planewouldbe flying in the
samedirectionasthe wind and at the samerelativevelocity magnitude.This meansthat
x(b) = X_o,x(a) = X_o- 7c, V = Vw. Using equation (3.25) in this example, the work due

to banked turn = 2 rn V 2. This is consistent with the difference in kinetic energy before

and after the turn. Note that in this example there is no change in potential energy. The

change in kinetic energy = ½rn(2V) 2 _ 7rn(0)l 2 = 2 rn V 2.

Up until now the assumption was made that the airplane was in vertical equilibrium and

therefore the load factor was equal to one. However, there is additional work being done

during the turn near a waypoint due to a load factor greater than one. This increased load

factor increases drag so it affects the specific excess power in the vicinity of each waypoint

where turning occurs. We can create a similar integral to the first term on the right side

of equation (3.22). This will be an integral of the difference of the power required for the

increased drag and the power required for the level-flight drag over the time it takes to
make the turn.

Work due to maneuvering drag = V[1 + 5c] dt (3.26)

where At is the time to complete the turn and W is the weight. To find this difference in

drag we start with a representation of drag as

A parabolic drag polar is being used so

co = COo+ (3.27)

The lift coefficient can be expressed in terms of the load factor (n) as

nW
CL----

pV2S/2

From this the drag equation becomes

D = Coo+ k \pros�2) (3.28)

Then the drag in equation (3.28) is subtracted from the drag for a load factor of one and

simplified.

_ 2kW_l_n 2_
pV2S \ /
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Nowthe integralfrom equation(3.26)can be evaluated.

At 2kW i1
Work due to maneuvering drag = _ p--_-5( - ,_2)[1 + f] at

We assume the turn is made in a circular path with respect to the surrounding air so the

load factor will be constant. Everything else in the integral will also be constant during

the turn except for the _c term so that is all that remains in the integral.

2kW(1-n2) At+ zXt_dt
Work due to maneuvering drag - pVS

After integrating we have the following

Work due to maneuvering drag - pVS V 2

(3.29)

where the subscripts, r and l, refer to the right and left waypoints respectively. While the

change in time is not known directly, it can be calculated by dividing the change in heading

angle by the heading rate (2). Assuming a horizontal coordinated turn we have

2= Vv/-_ - 1 (3.30)

Substituting equation (3.30) into equation (3.29)

Workdue to maneuveringdrag - _w_ [I(x,- x,)l_sg
+ _ sin(x_ X,))I] (3.31)TI(- sin(x_ - x,) +

The final energy constraint equation comes from combining the total energy from equa-

tions (3.22), (3.25) and (3.31) and using an implicit Euler scheme to approximate the

integrals.

0 = E,.--E1

- At(1 + :F,)(p_,+ P_,)/2
+ _-_(h,- hd
+ mr V,. V_(cos(xr- X_)- cos(x,- X_)) (3.32)

_'_w'/-_--_(Ix,.- x,I

+ v,.

3.3 Mass Change Constraint

The final equality constraint is an integral form of equation (A.24). This requires that the

change in weight between adjacent waypoints equal to the integral of the fuel-rate. The
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fuel-rate is dependenton the specificsof the engine.In this casethosedetailsareoutlined
in Appendix C. Wehave

--_l+/W_df = 0./Tt r

As before, we use an implicit Euler scheme to approximate the integral in terms of data

values at the adjacent waypoints.

The flight time is given by (3.2).
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Chapter 4

Vertical Plane Flight Numerical
Results

A code was written which uses simplified vertical plane versions of the constraints from the

previous chapter. Several problems were run on this version of the code for a few reasons.

First of all this is a simpler case and was used to see if the results made sense. Secondly

head winds and tail winds were introduced to see how they affect the flight path.

4.1 Description of Problem

The states are range, x, energy, E, and mass, <n. The controls in the problem are altitude,

h, and throttle setting, _. Since the energy can be computed from equation (3.11) we

include the vehicle's velocity with respect to the surrounding air mass in the analysis.

The NLP problem was set up in the following manner. The range coordinates were kept

in a separate array and are not available to the optimization algorithm. It is convenient

to arrange the remaining flight variables in a matrix. Each column of the matrix contains

the relevant variables at a waypoint. The variables marked with an * are the optimization

variables while the rest are fixed by the boundary conditions.

X = [Xo xl ...x;p]

hi *h2 ... hxp

A= v_ ,v_ ... v_p (4.1)
_1 ,_2 ... ,_
•(1 ,(2 ... ,(_

The optimization was subject to energy and mass constraints between every waypoint.

A simplified version of equation (3.32) is used for the energy constraint. Since the flight
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is restrictedto a vertical plane,the turning sectionof the energyconstraintis not needed.
Now_c= ___whereboth Vw and V are positive in the positive :c direction.

= Er - E1

- At(1 + f_)(Ps,. + Psi)/2

+ -
(4.2)

The mass constraint is the same as equation (3.33). With these two constraints the following

summarizes the numbers of waypoints, variables, constraints, and degrees of freedom in the

NLP problem.

• Np waypoints

• 4. (Np - 2) + 3 variables

• 2. (Np - 1) equality constraints

• 2. JVp - 3 degrees of freedom

For our numerical studies there are 29 waypoints, so there are 111 optimization variables,

56 constraints, and 55 degrees of freedom.

The time from one waypoint to the next is calculated by dividing the distance traveled

by the average inertial velocity at which the aircraft flies.

Xi+l -- Xi -- /_/h d_ = O. (4.3)

The integral is approximated as

fv, dt = v, (i + 1)+ v, (i)zxt (4.4)J 2

which is substituted into equation (4.3) and solve for At. The throttle setting, _, must

remain between 0.1 and 1 while the altitude, h, had a lower bound of 0.

All the results were run for the case of flying from :c = -4000 nmi to :c = 0 nmi over

a fixed grid of points. The initial condition on altitude was 10,000 feet while the initial

condition on velocity was 150 ft/sec. There are final conditions imposed which bring the

vehicle back to the initial velocity and altitude. As mentioned in Chapter 1 the performance

index was a linear combination of the weight of fuel consumed and the total flight time,

J = W/+# t/where # _> 0.
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4.2 Results

Figures 4.1 through 4.4 are the results of running the vertical plane version of the code

with no winds and varying the parameter, #, in the cost function (J = W/+ # t/). As

emphasis on time increases, the total time to fly decreases and the plane uses more fuel

because it has a higher throttle setting for a greater percentage of the flight. In Figure 4.2

(intermediate #) and Figure 4.3 (large #) the throttle stays at 100% even after the airplane

starts to descend, using both gravity and maximum power for more speed.

At the fifteenth waypoint on Figure 4.1, h = 76,400 ft and the weight is 4942 lb. From

equation (B.3) the minimum drag velocity is found to be 416.9 ft/sec at that altitude and

weight. From the optimal solution, the velocity at the fifteenth waypoint is actually 416.9

ft/sec so the airplane is flying at the minimum drag velocity. The data at the rest of the

waypoints for this case with no winds and no emphasis on time reveal similar results.

Figure 4.4 shows the family of solutions mentioned in the Introduction. It was con-

structed by taking final times and final fuel consumed from the cases run while varying

#. It should be noted that only the points marked with a 'plus' sign in the figure are

from actual data. The lines drawn between them are not from data but are only there

to better illustrate the general behavior exhibited by varying the emphasis on time. This

figure shows that as # increases from 0 to 2.26 lb/sec, the flight time decreases from about

22 hours to about 16 hours. The final weight also decreases from 4600 lbs to about 4420

lbs. The final weight decreases because more fuel is used when the throttle is at 100% for

a greater portion of the flight as # increases.

Figures 4.5 through 4.8 are the results of running the code with a tail wind of 50 ft/sec

and varying the emphasis on time in the cost function. By applying the same analysis as

the case with no winds to find the minimum drag velocity, the eighth waypoint on Figure

4.5 is found to have u -- V/V,,a = 0.926 so the plane is flying at less than the minimum

drag velocity. This is characteristic of all of the waypoints in this case with a constant tail

wind and no emphasis on time.

Figures 4.9 through 4.12 are the results of running the code with a head wind of 50

ft/sec and varying the emphasis on time in the cost function. Waypoint number fifteen on

Figure 4.9 is at u = 1.016 so the vehicle is flying slightly above the velocity for minimum

drag and this is typical of the entire flight. By looking at Figures 4.4, 4.8, and 4.12, it is

obvious that as the wind against the airplane increases, the range of possible flight times
decreases.

These vertical plane results took from 9 seconds to 55 seconds on a DEC Alpha 2100

computer system. In general the run time was shorter as the emphasis on time increased.
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Chapter 5

Three Dimensional Flight Numerical
Results

5.1 Description of Problem

The states in this three-dimensional problem are horizontal position coordinates, x' and

y, energy, E, and mass, m. The controls in the problem are altitude, h, throttle setting,

_, and heading, X. As before, the path is parameterized in terms of flight speed and the

energy is computed from equation (3.11).

The path is approximated by specifying at each waypoint the seven values: (x', y, h, V, m, X, _).

Between each adjacent pair of waypoints we enforce the equality constraints from kinematics

(3.3); from energy (3.32) and from mass change (3.33). In addition, we have the inequality
constraint (3.4). The bounds on the controls are the same as those for the vertical plane

problem in the previous chapter. For a simple flight problem we suppose that the values

of the first five variables are specified at the initial point and that the final values of the

horizontal position, velocity and heading angle are specified. The rest of the variables, each

denoted by an asterick in equation (5.1), are the optimization variables.

In this three dimensional problem the horizontal coordinates cannot be held constant

over the entire flight as they were in the vertical plane problem because turning at the

waypoints must be allowed to occur so all of the variables are conveniently viewed in one

A z

matrix, A.

2? 1 _272

Yl *Y2
hi *h2

v_ ,½
TVb 1 :_TVb 2

*X1 *X2

• . xN v

• . y;p

.. h;p

• . VNp

.. , rn Np

• . XNp

• . _Np

(5.1)
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with

• Np waypoints

• 7. (Np - 2) + 4 variables

• 3. (Np - 1) equality constraints

• 4. Np - 7 degrees of freedom

For our numerical studies there are 15 waypoints so there are 95 optimization variables,

42 constraints, and 53 degrees of freedom. For this three dimensional problem winds are

always horizontal in a counterclockwise direction about the origin. The problem will start

at some distance from the origin at a high altitude with some approximated amount of fuel

left to simulate the aircraft at the end of the data-taking leg of the mission. The results

from the previous chapter can be used to approximate how much fuel will be left after

taking data. In all cases in this chapter 1000 lbs of fuel will be the amount said to have

been consumed before heading home. All of the constraints are used as they are derived in

Chapter 3. There is also an inequality constraint (3.4) to keep the waypoints from getting

too close together.

The problem was solved for two main cases of initial position as seen in Figure 5.1.

The first case starts at point A where :c = 0 nmi and y = -1000 nmi and the second

starts at point B with :c = 0 nmi and y = 1000 nmi. The final destination is always at

:c = -2800 nmi and y = 0 nmi. The airplane is started at an altitude of 60,000 ft, since it

will be at a high altitude when completing the science mission. There are final conditions

imposed which bring the vehicle to an altitude of 10,000 ft and an airspeed of 150 ft/sec.

The problem is run with two different models. The first is an analytic model with

wind speeds varying as in Figure 5.2. The winds increase linearly with distance from the

Pole and piecewise linearly with altitude and they are circulating west to east about the

Pole. The maximum wind speed is 100 ft/sec which occurs 2800 nmi from Pole above

40,000 feet. The first few results are with the start of flight at point A and varying #, the

emphasis on time in the cost function. A second case will start at point B also varying

#. The second wind model is a cubic spline fit of wind data obtained from the NASA

Goddard Space Flight Center (GSFC). In this model the winds are still horizontal only

and they are also circulating west to east about the Pole. The data is taken from average

daily values, and wind speed is described as a function of distance from the Pole (latitude)

and altitude. The wind field from -40 ° to -90 ° latitude is pictured in Figure 5.3. Since

data is only available between altitudes of about 18,300 feet and 102,000 feet, the initial

altitude in these problems is 60,000 feet as before but the final altitude is 19,000 feet. The

performance index was the same linear combination of the weight of fuel consumed and the

total flight time, J = WI + # tf as in Chapter 4.
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5.2 Results

Figure 5.4 shows the horizontal projections of the results with # = 0 and # = 3.048 lb/sec

with the flight beginning at point A in Figure 5.1. With this starting point the direction

of the wind is helping the vehicle return to the base. Other intermediate cases were run

and are discussed later but only the extreme cases are shown in this figure for clarity. The

short line vectors coming from each waypoint, denoted by a circle, shows the heading of the

airplane with respect to the surrounding air. With # = 0 or a small number the airplane

starts its flight by almost turning away from the destination to fly a more curved path.

This maneuver is made to allow the circulating winds to help later in the flight. As # is

increased the airplane takes a more direct path to its destination.

Figures 5.5 through 5.7 show range histories of altitude and time histories of velocity,

throttle setting, and weight obtained by varying the emphasis on time with the flight

beginning at point A. With # = 0 in Figure 5.5 the altitude does not drop below 40,000 ft

for most of the flight since this is the minimum altitude where the winds remain at their

maximum for the given range. In the same figure some oscillation in the throttle setting

is apparent. This oscillation will be discussed in the Summary and Conclusions Chapter.

These figures show that as # increases in Figures 5.6 and 5.7, the throttle is near 100% for

a greater portion of the flight just as for the vertical plane results.

Figure 5.8 shows the time - fuel performance trade-off. This type of plot can be very

useful when deciding which path to use depending on time constraints. As noted in the

Introduction, operational issues are expected to dictate arrival times. If the vehicle needs

to be back as soon as possible, due to an approaching storm for example, one of the paths

at the lower left of the plot should be chosen. It should be noted that this figure shows

that there is a definite limit to how fast the plane can return home. The code can produce

solutions which use more fuel by increasing the emphasis on time in the performance index

but the time to return home will not decrease anymore past a certain point. This is because

the throttle is already at 100% for the entire flight. There will also be conditions where it

may be possible for the vehicle to get home faster but if it tries it may run out of fuel before

it gets there. Of course if the operator is not worried about the time of arrival, he should

choose a path at the right hand side of the plot to minimize fuel used, and so provide a

fuel margin.

Figure 5.9 shows the horizontal projections of the results with # = 0 and # = 3.048

lb/sec with the flight beginning at point B in Figure 5.1. Now the circulating winds are

mainly against the direction of the flight. The top curve in this figure is the one for # = 0.

The sharp turn at the third to the last waypoint is where the plane dropped below 10,000

ft (there are no winds). This is why the heading is in the same direction as the actual

flight path for the last few waypoints. Figures 5.10 through 5.12 show results with varying

the emphasis on time with the flight beginning at point B. These figures show that as #

increases, the throttle is near 100% for a greater portion of the flight just as for the vertical
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planeresults. Figure 5.13showsthe performancetrade-off. This time there is a smaller
rangeof times (between12and 23hours)to return the planeto the base.

Thesethreedimensionalresults took from 4 secondsto 30 secondson a DEC Alpha
2100computersystem.As in the vertical planecases,in generalthe run time wasshorter
asthe emphasison time increased.

Figures5.14through 5.18showresultsusingthe NASAGSFCwind model (Figure5.3)
starting at point B. In this casethe codewasrun with the wind magnitudesat 50%the
valuein Figure 5.3becausein severalof the casesthe airplanewasnot ableto return to
the basewith the givenamountof fuel in thosehigh winds.

With this muchvariability in the wind speedswith altitude and latitude there is the
possibilityof local minima. However,this possibility wasnot consideredin this analysis.
In the future a varietyof initial guesseson the variablescanbeusedto try to explorethe
possibilityof localminima. The resultsaresimilar to thoseusingthe analyticmodel.

Figure 5.14showsthat there isn't muchvariation in the horizontalprojectionsof the
pathswhen# is variedfrom 0 to a largenumber. As in usingthe analytical wind model,
Figures5.15through5.17showthe throttle settingstayingat its maximumof unity for a
greaterportion of the flight, time decreasing,and final weightdecreasingas# increases.
Figure 5.18showsthat there is a smaller rangeof flight times, between11.75and 14.5
hours,inthe family of solutions.
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Chapter 6

Continuous Optimal Control
Formulation in the Vertical Plane

In this chapter a version of the flight optimization problem is studied in the context of

optimal control. The intent is to find the structure of extremal paths from the optimality

conditions with the objective of better understanding the numerical results detailed in

Chapters 4 and 5. The results will not be used to calculate extremal paths; our numerical
results are based on the NLP formulations described earlier.

6.1 Optimal Control Formulation of the Cruise Model

To get to the vertical plane cruise model we begin with the cruise model in Appendix A.

First it is reduced in order by realizing that there is only one horizontal position coordinate

now for range, z. Heading angle is always constant so X is set equal to zero and the )_

equation is eliminated. The bank angle # will also be set equal to zero since the aircraft

will not be turning. Two states are equilibrated: it = 0 implies that there is a small path

angle or 7 = 0 and _/means L = W. As mentioned in Section 2.2, velocity and altitude

are combined into an energy state.

_. = v+vw

v¢_ _ cpo (6.1)

To get a cruise model the energy model is simplified even more by setting/) = 0. This

results in Pa = P,.. Now only two states remain:

_. = v+vw

_ _ cp,, (6.2)

The controls are velocity, V, and altitude, h.
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6.1.1 Derivation of the Breguet Range Equation

The Breguet range equation will now be derived for the case of no winds. In the cruise

model the independent variable may be changed from time to range (x) so that there is

only one state equation,

, _ (s3)
W}- dx _]V"

After integrating equation (6.3) and using a similar analysis to Anderson's [10] by assuming

steady, level, unaccelerated flight and that _], L/D, and c are constant throughout the flight,

the Breguet range equation is obtained.

R= _ln _° (6.4)
_/)1

where w0 is the initial weight of the aircraft and wl is the final weight. This shows that
L

the airplane should instantaneously fly at (_)_ax in order to maximize the range. The

corresponding velocity for minimum drag is as follows.

I 2W (6.5)

By looking at equation(6.5) it can be seen that as the weight of the aircraft decreases the

minimum drag velocity will decrease. The velocity is also dependent on the air density so

as the altitude increases, the density decreases and the velocity increases. Figure 6.1 shows

these relationships graphically with curves of constant weight on a plot of altitude versus

minimum drag velocity.

This analysis begins to explain why the vehicle tends to fly at the minimum drag velocity

with # = 0 in the absence of winds as discussed earlier. Also the same case shows in Figure

4.1 that as the altitude increases the velocity increases which agrees with the previous

analysis of equation(6.5).

When head winds and tail winds are added to the problem, basic flight mechanics [11]

says that the airplane should fly at u < 1 in a tail wind and u > 1 in a head wind. This is
consistent with what is seen in Section 4.2.

6.1.2 Hodograph

The term hodograph was coined by Hamilton in 1845 [12]. He was interested in the way the

relative velocity vector (represented as a point in a plane) changed as two bodies moved

under their mutual gravitational attraction. Hamilton observed that under Newtonian

inverse-square gravitation the graph of the velocity vector is always a circle. In modern
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control the term hodograph is used to describe the set of possible state-rates as the con-

trol is allowed to vary over admissible values. Using the ordinary differential equation

representation,

_ = f(z, u),

we are interested in the set of points produced by the function f as u varies at fixed z. For

the current application the state consists of two components namely x and Wf.

Getting a picture of the hodograph for the cruise model is a fairly simple task. There

are two controls, velocity and altitude, so a two parameter family of points can be drawn.

These are plotted as a family of curves; Each curve is plotted for a constant altitude while

varying the vehicle airspeed, V, from a lower bound at the stall speed to an upper bound

which causes the power required to exceed the maximum power available. Each curve

is similar to the power required versus velocity curve since lJ;f is proportional to power

required. The hodograph is pictured in Figure 6.2. The range rate and fuel rate values in

this figure are nondimensional. The range rate is scaled by the velocity for minimum drag

at standard sea level and standard weight, V,,d. The fuel rate is scaled by the standard

weight divided by the time scale, W_/T_cl, where T_cl = V,,d/g. It is drawn for the case

where there are no winds. The curve which starts at the far left of the figure is the one

corresponding to the lower bound due to the terrain, in this case h = 0 or sea level. As the

altitude increases the curves move to the right and get shorter due to the velocity limits

already mentioned. As shown in the figure there is an envelope created by these curves

which appears to be linear in the middle portion between the range rates of approximately
1 and 2.

In order to show that the envelope is linear, Taylor and Mann's [13] method for deter-

mining envelopes of plane curves is used. We have a family of curves in the (¢, ¢) plane.

Each curve is parameterized by a value of c_. That is F(0: ¢, c_) = 0 at fixed c_ determines

a curve in the plane. In the present case we have _' = 0, Wf = ¢ and h = c_.

= V

l/Vf = _Pr(V,h) - fl(V,h) (6.6)

where Pr(V_ h) is the power required. A derivation of the power required equation is

included in Appendix B. Rearranging equation (6.6) to be in the form f(¢,_, c_) = 0

yields the following:

F(V, I/VI, h) = f_(V,h) - I/VI =0 (6.7)

where V is used for _'. The condition on the envelope from Taylor and Mann [13] is

= 0 (6.s)

where F3 - Oro_.When this condition is applied to equation (6.7), we find that _ = 0.

Solving this equation results in V = G,,d. When this value of V is substituted back into
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equation(6.6),the ratio of #__z_(the slopeof the envelope)turns out to be a constant for a
&

constant weight. This shows that the envelope is a straight line. The curved portions are

only due to the limits on altitude. So, because V = G,,_, the linear portion of the envelope

corresponds to the airplane flying at maximum lift to drag.

6.1.3 Optimal Control Problem

There are lower and upper bounds on both controls. The lower bound on h will depend on

the terrain being overflown. The lower bound on V is the stall speed of the airplane which

is dependent on the altitude. There is an upper bound on the lift coefficient which has an

effect on the maximum altitude at which the airplane can fly. The specific excess power

must be greater than or equal to zero. This means that the maximum available power

must be greater than or equal to the power required, Pa .... _> P,.. The throttle setting, _,

is multipled by the maximum power available and can be adjusted between 0 and 1 so that

.... = P,..
The following summarizes all of the limits placed on the controls.

fil = (h - hT) _> 0 (terrain limit)

fi2 = (V - V_t_u) _> 0 (stall velocity limit)

[_a = (eL .... - Cc(V, h) ) >_ 0 (maximum lift coefficient limit)

_4 = P_.... (v,t_) >_ 0 (specific excess power)

Using Bryson and Ho's [1] notation, the performance index can be a function of both the

states at the final time, z(tf), and the final time itself, tf. In this case it will be a Mayer

type function and more specifically it will be a linear combination of the weight of fuel
consumed at the final time and the final time itself.

0(x(t:), t:) = + ,t: (6.9)

where # is some positive constant. By increasing the value of # the emphasis on minimizing

time increases; when # = 0 only fuel consumed is being minimized. Initial values of :c and

Wf are specified while a final value is specified only for :c. The final constraint on range

can be represented as _ = x(tf) - xf = 0. As in Bryson and Ho [1], a new scalar function,

q), a linear combination of the performance index and the constraints, _, is defined as the

following:

= 0 + (6.10)

The variational Hamiltonian, H, is as follows:

H = axS+ (6.11)

61



wherel_ and l_ are the co-states. To have an optimal solution the Hamiltonian must be

minimized over the possible set of control values. If the constraints (/#,i) are not active then

the following conditions apply:
OH -- 0

o
Oh --

We shall examine the minimization of H from a geometric view based on the hodograph.

The costate vector A (created by the costates Ax and A_) can be plotted on the same

l_f versus :b plane as the hodograph. Since the Hamiltonian is a dot product of the costate

vector and the state rate vector, lines of constant Hamiltonian are perpendicular to the

costate vector as shown in Figure 6.3. The direction of increasing Hamiltonian is in the

direction of the costate vector.

The optimality condition requires that we find a constant H line that separates the

hodograph plane into a part that contains the achievable state-rates and a part that has

no achievable state-rates. This line will be _tangent' to the envelope of the hodograph in

Figure 6.2.

The transversality conditions [1] include the requirement that H = -#. For the fuel

optimal (only) case we have # = 0 and this means the constant H line must go through

the origin.

Combining the tangency requirement and the H = 0 requirement we find that all points

along the _flat part' of the hodograph satisfy the optimality condition. This means that in

cruise approximation, minimum fuel flight with no winds always occurs at the minimum

drag velocity. The central part of our NLP solutions are nearly in equilibrium and display

this feature.

For positive # the separating H line must be below the origin (l_/ < 0 at :b = 0). This

leads to a tangency point on the envelope of the hodograph which is also on the maximum

altitude curve as is seen in Figure 6.4. When # is large, the solution is at the upper bound

of altitude. As # is decreased from that value the constant H line moves closer to the origin

and the solution point moves towards the linear portion of the envelope curve as shown in

Figure 6.4.

Some insight into why certain behavior is seen in some of the numerical results was

gained by this analysis. First of all, it was found that the airplane should fly at the

minimum drag velocity in the absence of winds and with no emphasis on time. In the cases

that were run with no winds and # = 0 the airplane did fly at or very close to this velocity.

Another important result of this analysis was finding that the envelope of the cruise

model hodograph is linear and that all points along that line are extremal. When # = 0,

there is no unique answer. The cruise model says to fly at the conditions for any point

along that linear extremal on the hodograph. These points correspond to the points along

a constant weight curve in Figure 6.1 which means the airplane can fly at any altitude as

long as it flies at the minimum drag velocity.
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Chapter 7

Summary and Conclusions

An energy model was developed for flight in a horizontal wind field. A Non-Linear Pro-

gramming problem was formulated to optimize the flight path with a performance index

based on a weighted sum of fuel-consumed and final time. Constraint equations were de-

rived for kinematics, energy, and mass. The energy constraint included energy exchange

due to turns made at the waypoints.

A prominent feature of the results in Section 5.2 can be interpreted as a three dimen-

sional version of Zermelo's problem [1]; the winds act like currents and the vehicle flies in

a path such that the winds can help it to its destination.

7.1 Throttle Oscillations

The oscillation in throttle setting seen in some of the results could possibly be due to the

way the integral is approximated in the mass constraint equation. To approximate the

integral a simple average was used:

At r +

In the near cruise condition the maximum flow-rates are nearly identical so that the integral

is essentially At[l_/]_,_x. (_,,. + _1)/2. Any change in the pair _,,.,_l that produces the same

average will produce the same fuel flow-rate. This argument also applies to the power
available.

As an alternative formulation, perhaps the left value of the throttle setting, _l, should

have been used for the whole calculation since the controls are assumed to be piecewise

constant, not piecewise linear.
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7.2 Effects of Energy Interchange

The effects of the energy interchange are more subtle. The total energy change between

waypoints (Er - El) is the sum of several terms: specific excess power term with no winds

from first integral in equation (3.21), energy terms due to winds from last two integrals in

equation (3.21), energy due to banked lift in the turn from equation (3.25), and energy due

to maneuvering drag from equation (3.31). Typical ascending and near cruise condition

waypoints were selected from the three dimensional problem with the analytic wind model.

The waypoints selected from the ascending portion of the flight were 190.6 nmi apart from

each other in the horizontal direction and were 11,040 ft apart in altitude. These waypoints

had the following energy interchanges between them:

E,,.- E1 = 11,084.6 ft

fP_ dt = 11,023.7 ft

/ P_ f at - / f & = 60.96 ft
Banked lift term = 0.509 ft

Maneuvering drag term = -0.00561 ft

The turning terms were not significant (about 0.51% of total energy change between two

waypoints) in climbing portion of the flight.

The waypoints selected from the near ]eve] portion of the flight were 328.2 nmi apart

from each other in the horizontal direction and were 1,030 ft apart in altitude. These

waypoints had the following energy interchanges between them:

E,,. - E1 = 6.57 ft

f P_ dt = -4.237 ft

f P_ f at - f.v & = -3.oso ft
Banked lift term = 5.391 ft

Maneuvering drag term = -0.0299 ft

The term due to the banked turn is significant (about 82% of total energy change between

two waypoints) in this near level portion of the flight.

The change in total energy between the two waypoints is greater in the ascending

portion of the flight due to a greater difference in altitude and velocity. There isn't much

difference between the altitudes of the waypoints in the near level portion of the flight so

the energy terms due to turning make up a greater percentage of the total energy change.

7.3 Software

It was seen that the computer run time generally decreased as emphasis on flight time (#)

increased. This was due to the solution point moving away from the linear portion of the

hodograph so that there was a more definite and specific solution as was shown in Figure

6.4. As # increased the vehicle went towards the maximum limits on throttle ({ = 1) and

altitude for a greater portion of the flight. With less emphasis on time the solution was on
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the linear portion of the hodographsoany point alongthat line wasa solutionsoit took
moreiterationsto cometo a specificone.

The resultsof this papercanbeusedin the flight planningof the Theseusvehicleby
havingthe humanoperatorchoosefrom family of solutionsdependingon a desiredlanding
time. A family of solutionssuchasthe onein Figure 5.18canbe createdin the time it
takesto run about 4 to 5 casesof varying# factors. This turns out to be only about 1to
5 minutes,sothe family canbe foundquickly and a flight plan selectedwhile the airplane
is flying.

Finally, the computercodedevelopedfor this papercanbe usedin generalfor flight
planningof anyvehicleof this classflying in a horizontalwind field. Thecodeis modular
and requiresa subroutinefor the specificaircraft enginemodel wherethe input is the
current air velocity and altitude and the output is the maximum thrust poweravailable
and the maximumfuel flow rate. A subroutinefor the winds is alsonecessary.The wind
modelis givenanaltitude and distancefrom the Poleand it returnsa wind speed.Some
specificdata for the aircraft is alsoneededsuchasthe parabolicdrag data.
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Appendix A

Point-Mass Model

Our dynamic model can be simplified for the case of 'low' speed, 'short' range flight 'near'

the surface of the Earth. Therefore an approximation of a flat, non-rotating Earth is made

so the analysis begins with the hypothesis that a reference frame with its origin at a fixed

point on the Earth's surface is an inertial reference frame (called the Earth-Fi¢ed/nertial

Frame). Newton's Second Law implies that the equation

F I, (A.1)z ?yt7

describes the motion of the mass point at Fwhen subjected to the net applied force/7 at the

current mass, Tn. Our first task will be to relate the second derivative term to meaningful

engineering quantities, such as speed and flight-path angle. We will also develop some
useful kinematics.

A.1 Relative Motions

To carry out this analysis in an efficient manner we consider a general situation with two

reference frames (cf Sec. 5.1 in [14], see Fig.A.1). It may be convenient to think that ._

is the fi_ed reference frame and that 5_M is the moving reference frame. The translational

motion of -_M with respect to ._ is given by the (time-varying) position vector/_(t). The

rotational motion of -PM with respect to -PI is given by the (time-varying) angular velocity

vector g(t).

Following developments in ([15], pp 383 386) we write

F=/_ + F (A.2)

and find that:

dt (A.3)
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and that:

Note that with A - 0 (so that - equation (A.3) relates the
operation in one frame to that in a second frame. In the following we will be applying

these principles to the flight motion problem. It is neeeesary to clearly define the various

reference frames; in particular we must describe the appropriate cJ relating the relative

angular motion. We have already agreed that the Earth-Fixed-Inertial system provides our
inertial frame and we will now introduce several other frames.

A.2 Reference Frames

The analysis in the section closely %llows the development in [16]. A reference frame is

arranged with origin Q at some fixed point on the surface of the Earth, and with x axis

pointing North, y axis pointing East, and z axis pointing in the direction of gravity. This

is the Earth-fixed frame as mentioned earlier and the symbol Dc¢ is used to denote it.

The next reference frame the local horizontal frame, .Pt_ will have its origin at the

mass center of the flight vehicle. The position of the vehicle can be reckoned from the

origin G of frame Dc¢. Specifically, the location can be given in terms of a North/South

position, x, an East/West position, y, and an altitude h above the Earth's surface. The

coordinate axes are arranged so that they are parallel to the Earth-fixed axes.

There is no transformation needed from Dc¢ to Dct_since the two frames are aligned just

as DCsand DcM appear to be aligned in Figure A. 1.

We now recall that for the wind-axes reference frame- Sw - the origin is at the mass

center of the flight vehicle, the x_ axis is aligned with the velocity of the vehicle (relative to

the surrounding air mass), the z_ axis is in the symmetry plane of the vehicle, downward

in the normal flight attitude, while the y_ axis completes the right-handed orthogonal set.

The relative orientation of the frame S_ with respect to the local horizontal frame D%_is

described by the velocity-yaw angle X (heading angle), the velocity-pitch angle 7 (flight-path

angle), and the velocity-roll angle p (bank angle). Composing these elementary rotations
we find

Lh_w

cos 7 cos X
sin # sin 7 cos X - cos # sin X

cos # sin 7 cos X + sin # sin X

cos 7 sin X

sin # sin 7 sin X + cos # cos X

cos # sin 7 sin X - sin # cos X

- sin 7 ]

sinpcos 7 ] (A.5)cos # cos 7

The relative angular velocity between Dch and S_ is due to changes in the angles X, 7

and p. The usual analysis leads to:

(A.6)
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where

q_ -- 0 cos# sin#cos"7 • z/ (A.7)

r_ 0 -sin# cos#cos7 ;_

aTt_/_= 0, implying that aT,w/t_ = aT,w/_. The angular rate of S_ relative to _c is the same as

that of S_ relative to _ct_.

A.3 Kinematics

The position of the flight vehicle has been described in terms of :c (positive to the North),

y (positive to the East) and h (altitude). Clearly, the velocity will be related to the rate

of change of these quantities. Using the point notation from Figure A.1 and letting the

Earth-fixed frame be _ci and the horizontal frame be _cf in the figure the following is true:

m_. ____________+

= _(QA)+(AB)+(BO)I_
dt

_ dx_t_asI_+_1_ +dasi_l_

= _'_ +_)A --hk_ (A.8)

where _ is the inertial velocity and is the vector sum of the airplane's velocity with respect

to the surrounding air and wind velocity so that

= V + %. (A.9)

In this case the winds are in the horizontal direction only so

(A.IO)

V,_ and V,_y are the horizontal components of the wind velocity. Solving equation (A.9)

for V and substituting in equations (A.8) and (A. 10) yields the following equation:

= s.{_ + j )_ - i& - _w_{t_- _ )_ (A.11)

We also have

V= V {_ = V(cosTcosx{_ + cosTsinx._ - sin7 k_ ), (A.12)
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Thetwoequations(A.11andA.12)provideequivalentexpressionsfor thevectorV. Equat-

ing components leads us to:

_' = V cosTcosx- ff"_

= W cosTsin_-Vwy

Jz = Vsin7

The expression (A. 13) provides the kinematic relation for our problem.

(A13)

A.4 Inertial Acceleration

We now proceed with the main task of working out the expression for the acceleration term

in (a l)
From the definition of the inertial velocity in Equation (A.9) the inertial acceleration is

now computed as:

Before proceeding with a coordinate representation of the vector terms in (A.14), it is

worth considering the question of which reference frame might be best for this purpose.

While several choices are reasonable, the most common in the study of flight paths is the

wind-azes system. One reason for this choice is the representation of the aerodynamic force.

Based on (A.14) the inertial acceleration will be composed of two terms. Since we opt

for wind-axes, it is natural to compute the first of these as:

dt z -_-/-

and expanding the cross-product term we find

dV
I_-- ¢_, + v (_d_, - qJ%,) (A.lS)dt

Tile second (wind) term in (A.14) is found to be:

dt dt

= V_, _t_ + V_y Ft_ (A. 16)
4" 4"

where V_x and V_y are the horizontal components of the wind acceleration. Transforming

into the wind axes components,

1_,2 = Lh,_,,_ • (A.17)

When the vector representation is transformed into the wind axis system, there can be

a third component of the wind acceleration in this system if the airplane is banking or

pitching.
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A.5 Force Representation

We commonly decompose the net force acting on the flight vehicle into aerodynamic, propul-

sive and gravitational contributions.

F=S+:r+W (A.18)

A.5.1 Aerodynamic Force

Symmetric flight is being assumed which means no side slip, _ = 0, and no side force,

Q = 0. The components of the aerodynamic force in the wind-axes systems are then

denoted by drag and lift only; that is

/; = -(D_ + Lk_ ) (A.19)

The D(.) and L(.) functions are specific to the vehicle whose flight performance we wish
to model.

A.5.2 Propulsive Force

In this case the thrust direction is always assumed to be in the aircraft velocity direction.

Specifically, we find

'F = T _ (A.20)

A.5.3 Gravitational Force

The gravitational force is easily represented in the 5%_ frame as W = rn.q(h)kt_ . In this

model acceleration due to gravity, g, is assumed to be constant at all altitudes. The

components in the Sw frame can be found from the third column of the transformation

matrix (A.5) which leads to

+ sin.cosy + cos.cosy (A.21)

A.6 Assembling the Pieces

Our objective is a dynamic model (in this case a system of ordinary differential equations),

that will describe the time evolution of the position/velocity of the vehicle. We have chosen

to parameterize the position in terms of (z, y, h) and the velocity in terms of (17, 7, )_).

The differential equations describing the evolution of (z, y, h) have been given explicitly

in (A. 13). The model for the evolution of (17, 7, )_) is more intricate.
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Our basicequationis (A.1). Thedescriptionof the accelerationterm hasbeendonein
Section(5), whiletheforcetermswereanalyzedin Section(6). Wehaveelectedawind-azes

resolution of the vectors. To describe the process for extracting _9, _/, and 9_, it is helpful

to write our version of (A.1) as:

The wind-axes representations of the various terms on the right-side of (A.22) are given in

the previous sections. Each term is computable from the current values of

(z, y, h, V, 7, X,m) and (#).

The former seven variables are called state variables - these are the variables whose evolution

is governed by the differential equations. The latter variable, along with throttle-setting are

called control variables- these are viewed as selectable by the pilot. The pilot (or auto-pilot)

effects the motions of the vehicle through the choice of the (time-varying) controls.
The _ component of (A.22) may be solved directly to obtain V. The j,w component

yields r_, while the k_ component yields q_. With these known, the bottom two rows of

the matrix equation (A.7) can be solved for _/ and _. The seventh state-variable is the
mass of the vehicle - its rate of decrease is the fuel mass-flow-rate which must be described

as part of the propulsive model.

The last two rows of (A.7) can be manipulated to produce:

_/ = cos#q_ - sin#r_

cosTx = sin#q_+cos#r_

Combining this with (A.22) leads to our modeh

= (T - D - sin - W1

The seventh state can be written as the rate of fuel consumed since the weight of fuel varies

in the same way the weight of the entire aircraft varies. This seventh state is

cPo (1.24)

where Wf is the weight of fuel consumed, c is the specific fuel consumption, P_ is the power

available, and _] is the propeller efficiency.

Equations (1.13), (1.23), and (1.24) make up the point-mass model for symmetric

flight over in flat non-rotating Earth in a horizontal wind field.
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Appendix B

Calculation of Power Required

A procedure similar to ARPS [11] is followed to determine the PIW-VIW curve for the

aircraft• A PIW-VIW curve is a nondimensional power versus velocity curve which is good

for a certain aircraft configuration at any weight and altitude. Assuming a parabolic drag

polar as in equation (3.27) and that L = W,

D Co Coo + k CL 2
- - (B.1)

W CL CL

After substituting CL -- w/s into equation (B.1) where q is the dynamic pressure we get:
q

D C.o k w/s (B2)
w -w/s q+ -V-

i__

Using the lift coefficient for minimum drag, CLmd : %/CDo/k, the velocity for minimum
y

drag is found to be

2(W/S) 1 V_._._ (B•3)

where tile e subscript in V_,d is for equivalent velocity so that V_ = Vv/-G and r7 = _
po

1 2
After substituting q = 7po_ and doing some algebra using V_d in equation (B.2) the

following expressions for the drag to weight ratio are obtained:

D
W

__ [(L/D_nax] 1 [_2___ u12]

(B.4)

where u = V/G,,d.
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D
The power required to overcome the drag force is P,,. = D • V. Now the _ expression

from equation (B.4) is substituted into P,. and both sides are multiplied by _ to get the

following expression which is good for any altitude.

P"v/-J=[(L/D)'_ax]2 1 (W V_d) [u3+1 ] (B.5)

The equivalent velocity for minimum drag still depends on weight so a distinction is made

between weights. Wt will be the "test" or actual weight and W_ will be a standard weight

(say the full weight of the aircraft). In all equations until now W has been the test weight.

A new velocity parameter, independent of weight, is now introduced.

44/---_"'- 4 / 2(w_/S) (t_. 6)r_- V -Zv Z
V is tile air speed for minimum drag at tile standard weight and at standard sea level

We have V¢_,d = V_/-_-wW_.V is substituted into equation (B.5) and both sidesdensity. are

divided by (Wt/W_) 3/2 and the scaling power, W_ Vto get a nondimensional expression for

all weights and altitudes.

(w_/w_)3/2= [(L/D)'_`ax] 1 In3+ 1] (B.7)(w_ v) 2

The parameters PIW and VIW are now defined nondimensionally as:

p,,/s

PIW - (w_/w_)3/2
- (w_ v)

VIW - u-

Note that PIW only depends on VIW. The only data needed about the aircraft in order to

draw its PIW-VIW curve, assuming a parabolic drag polar, is (L/D),_ as shown in the

following equation obtained by substituting the definitions of PIW and VIW into equation

(B.7).

Piw = [(L/D)_]i VlW_ + (B.S)
2

A value for VIW can be found by knowing tile following: V/V, _, and Wt/W_. PIW

can be calculated from VIW as in equation (B.8). Finally, the power required is obtained

nondimensionally using values already mentioned from the following equation:

p, PIw (w_/w_)_/_
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Appendix C

Aircraft Data

C.1 Aircraft Dimensions

maximum gross weight = 5511 ]b

empty weight = 3825 ]b

wing area (S) = 678 ft 2

aspect ratio (AR) = 28

C.2 Flight Characteristics

The vehicle is to operate at high altitudes (60,000 - 80,000 feet) and low dynamic pressure,

Q, (a few pounds per square ft) so it has been designed with a low wing loading, CL Q =

W/S. Since the Q is low, W/S has to be low. A parabolic drag polar, CD = CDo + k C_
is used where

e = 0.96

CDo = 0.0153

k = (TcARe) 1 = 0.01184

C.3 Engine Model

The aircraft has two engines at 80 hp each.

Specific Fuel Consumption (c) = 0.45 lb/hr/HP

Propeller Efficiency = 83%

The power available is constant up to 65,000 ft and will decrease linearly to 60% at 82,000

ft.
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